To appear in PROLE 2008

TILC:
The Interactive Lambda-Calculus Tracer'

David Ruiz and Mateu Villaret 2°

Informatica i Matematica Aplicada
Universitat de Girona
Girona, Spain

Abstract

This paper introduces TILC: the interactive lambda-calculus tracer. TILC aims to be a friendly user
graphical application that helps teaching/studying the main basic concepts of pure untyped lambda-calculus.
This is achieved by allowing users to graphically interact with a sort of parse-tree of the lambda-terms and
automatically reproducing these interactions in the lambda-term. This graphical interaction encourages
students to practice with lambda-terms easing the learning of the syntax and of the operational semantics
of lambda-calculus.

TILC has been built using HASKELL, wxHaskell and Happy, it can be freely downloaded
from http://ima.udg.edu/"~ villaret/tilc.

Keywords: lambda-calculus, tracing tool, teaching/learning

1 Introduction

Teaching (studying) lambda-calculus for the first time to undergraduate students,
not used to this kind of formalisms, has some difficulties. Take the grammar of
lambda-calculus with just names of variables, lambda-abstractions and the curried
application, mix it with the corresponding lot of parentheses, finally shake it with
the notational convention, and that’s it, you get the more appropriate cocktail to
produce in the students the feeling of “Oh my god!!! what a hard day...”.

In the Universitat de Girona, pure untyped lambda-calculus is taught in a fourth
year mandatory programming paradigms course in the computer science curricu-
lum, as the archetypal minimal functional programming language and therefore
the computational model for this paradigm. As in many other courses where
lambda-calculus is taught, we follow this process: presentation of syntax, defini-
tions of bound and free variable occurrences, definition of capture-avoiding sub-
stitution, definition of the operational semantics of lambda-calculus with «, 5 and
n-transformations, and in the end, normalization strategies and corresponding main
theorems. Then we try to convince the students that this formalism is, in fact, the
computational formalism that underlies functional programming. Hence, we define
lambda-terms for Church numerals, boolean, conditional, tuples, lists and finally,
the Y and the T fixed-point combinators. These terms allow us to see that any “re-
cursive” function, like the factorial function, can be encoded within this formalism.

Nevertheless, when one shows these encodings, students feel as if there were a
kind of “black magic”...To see why these encodings work, students have to practice.

1 The work has been partially founded by Escola Politécnica Superior of Universitat de Girona
2 Email: u1046809@correu.udg.edu
3 Email: villaret@ima.udg.edu

This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:u1046809@correu.udg.edu
mailto:villaret@ima.udg.edu

Ruiz, VILLARET

TILC is a graphical application that mainly consists of an area where lambda-terms
are textually introduced, and a panel where the parse-tree of the term is represented
and can be manipulated. The effects of these manipulations are graphically and
textually reproduced: sub-term identification, bound-variables and corresponding
lambda-binders highlighting, B-reduction, Moreover, the application allows the
user to define alias for lambda-terms via let-expressions and these can be naturally
used in subsequent lambda-terms. Using a tool dealing with these features in a
friendly and graphical manner encourages students experimentation, and therefore,
students comprehension of lambda-calculus.

Several works exist? dealing with the practice of lambda-calculus but none of
them fits precisely with our educational purpose. In [3] lambreduce is described.
It is a web-based tool written using Moscow ML which allows users to write pure
untyped lambda-terms and ask for different normal forms using distinct strategies.
Nevertheless it works textually and does not deal with parse-tree representation.
In [2] we find the graphical application The Penn Lambda Calculator. It is focussed
on teaching and practicing with lambda-calculus but applied to natural language
semantics. Another graphical web-based tool is the lambda-animator [5]. This
application goes one step further than ours because it deals with more advanced
features as: graph reduction with sharings, laziness, d-reductions, etc. Nevertheless,
it does not assist basic syntax comprehension like subterm or binding, nor direct
manipulation of G-redexes, etc. Some of the features of this application could be a
perfect continuation to ours. In fact, the use of é-reductions, sharing and so on, links
with many other tools that deal with visualizations for the functional programming
paradigm as: CIDER, WinHIPE, TERSE, ... The survey in [6] provides a brief
description of these and other tools that also serve for tracing functional programs.
These could be the natural subsequent tools in a functional programming course.

TILC has been developed by David Ruiz as a diploma thesis and was proposed
and supervised by Mateu Villaret. It has been fully developed using HASKELL,
wxHaskell for the graphical interface and Happy to build the parsers. Its home page
is http://ima.udg.edu/"~ villaret/tilc from where documentation and binary
files for Windows can be freely downloaded. Binaries for other platforms and source
code are under preparation.

2 Recalling Pure Untyped Lambda-Calculus for TILC

Pure untyped lambda-calculus used in our framework rely on [1] as the standard
reference. A lambda-term is a wariable x from some denumerable set of vari-
ables, a lambda-abstraction (Ax.A) which binds x in A or an application (A1 A2)
of a lambda-term A; (typically a “function”) to a lambda-term Ay (the “argu-
ment”). Let var be any variable, the recursive grammar of lambda-terms is:
A = wvar | Awvar.A) | (A A). As usual we assume that application is left-
associative, hence when we write A; Ao Az ... A, we mean (... ((A; A2) Az) ... Ay).
We also assume that the scope of a A-abstraction binds as much to right as possible,
hence when we write Azy . Aza. Azs. A we mean (Az;.(Aze.(Azs.A))). Finally, we

4 For an extense list of web-pages related with lamda-calculus, several of them containing lambda-calculus
interpreter implementations, visit http://okmij.org/ftp/Computation/lambda-calc.html.

2

Ruiz, VILLARET

can avoid the repetition of As in consecutive A-abstractions, hence when we write
AT1, T2, x3. A, we mean Axq.Ars. Ax3. A.

Variables in lambda-terms may occur free when they are not bound by any
A-abstraction. Terms are considered identical modulo renaming of bound vari-
ables. By Ai[z — As] we denote the substitution of variable z occurring free in
A1 by As; this substitution can not capture variables occurring free in As hence,
bound variables in A; are renamed if necessary. Redezes are subterms of the form
((Ax. A1) Ag), B-reducing a redex like this results in Aj[xz — As]. When a term does
not have any redex, it is said to be in normal-form. A redex occurs at the left of
another if its first A-abstraction appears further to the left. The leftmost outermost
redex is the leftmost redex not contained in any other redex. The normal reduction
order is the one that consists of reducing firstly the leftmost outermost redex.

3 Description of TILC

TILC parser for lambda-terms is as usual: the A symbol is \, variables are words
starting with lower-case letters, and names of defined lambda-terms are words in
capital letters. The lambda-terms parser also allows us to use typical assump-
tions like left-associativeness of application, scope of lambda-binder and lambda-
abstraction repetition. Roughly speaking, the graphical representation for the
lambda-terms is its parse-tree where the non-terminal production for application
is made explicit with the binary symbol @. In other words, it is the tree representa-
tion of the translation of the lambda-term to a first-order syntax where application
is the binary function symbol @ and lambda-abstractions are unary function sym-
bols labelled by the variable that is being abstracted \x. This transformation can
be obtained by means of this recursive rule:

f(X) =X where x is a variable translated into x
f(Ax. A) = \X(f(A)) where \x is the corresponding unary function symbol

F(A Az) = Q(F(A1), F(Az2))

For instance, F(Ay.((Ax.(A\y.(zy)))(Az.(xy))))
results into the following first-order term:

\yC e \x(\yC a(x, y))), \x(elx, y))))
which has this tree representation.

As we have already said, TILC aims to be a user-
friendly visual experimentation platform for untyped
lambda-calculus. Therefore, we provide the tools to help
the user understand basic syntactical and operational
sematic aspects. We enumerate some of them:

e Syntactical aspects:
- Notational conventions: users can write terms according to convention. Marking
subtrees and getting the sub-term highlighted with the same color is useful for
students to get rid of the initial doubts with respect to syntax convention.

3

Ruiz, VILLARET

- Free and bound variable occurrences: users can highlight free-variable occur-
rences and bound-variable occurrences with their corresponding lambda-binders
by selecting a node with the bound-variable, or its lambda-binder.

- B-redexes identification: users can highlight all B-redexes of the tree and see
the corresponding subterm highlighted with the same color.

[loix
Tie Ve ftons oot e
A’ (.0 (SND ((PREFN f) (PREFN f) (PAIR TRUE) x))))) S |
]
=]
let DENTITY ='cx ; -]
let TRUE =y x;
et FALSE =y,
et NOT =t t FALSE TRUE;
et FTHENELSE = by \z. Xy 7; @
let AND = iy, x y FALSE;
et FIRST = . x TRUE; /,/
et SECOND = . x FALSE; N
et PAIR = .y o, pxy, S e @l
let SLUC = e, n f (Fx); e ™
et ADDITION = ¥min . mf (n f);
et PRODUCT =i nifix. m (n f)x;
et ISZERO = n. n (ix. FALSE) TRUE; @(:@
let PREFN = \fp.(PAIR FALSE (FTHENELSE (FIRST p) (SECOND p) (f (SECOND 7\ e N
P / \ / AN
let PREC = f 'x. SECOMD (n (PREFN f) (PAIR TRUE x)); @l
et ¥ = V.. £ (x93 (bcF (<)) I\ VAN
et T = (o y DX yn) (o y (xxy)) /A / \
let FACT =T (n. (FTHENELSE (ISZERO n) 1 (PRODUCT n (f (PREC m)))));
ot 0 = 161 = AR
Load Exit
elcome. soslcation Y

Fig. 1. Terms definition editor and partially expanded and normalized PREC 2 lambda-term.

e Operational Semantics:

- fB-reduction: users can choose the §-redex they want to reduce by selecting it
on the tree. Then they can see its effect on the tree and on the term.

- normal-form: users can obtain the normal-form of a term (if it exists).

- normal-order reduction sequence: users can obtain the normal-order reduction
sequence textually, and the selected S-redex is underlined.

- combinators definitions: users can define, save and load, any lambda-term, like
the classical ones for church numerals. Once these are loaded, they can be freely
used in the terms and graphically expanded in the tree.

In figure 1, we show the A-terms definition editor and the partially expanded
and reduced PREC 2 term (predecessor of 2). But identification of (-redexes and
the possibility of choosing the redex to reduce is the most attractive feature. In 2,
we select a redex among the lot of redexes that has been highlighted at this stage
of normalization of the fully expanded PREC 2 term. Other more advanced aspects
as sharing for laziness and high-performance in §-reductions are not currently con-
sidered because of our original pedagogical goal.

As a brief overview to the modular structure of TILC we can say that it re-
lies on a main module gui.hs that uses the wxHaskell library to deal with the
graphical interaction of the application. Nevertheless, the most important module
is Tree.hs, this is the module in charge of the tree representation and manipulation
of the lambda-terms; this module uses the module Attributes.hs that defines the
required properties of the tree nodes. Apart from these modules, there are also a
couple of parsing modules written using Happy: one of them translates lambda-terms
into trees and the other one deals with let definition. There is also the module
Reduction.hs that has all functions for performing g-reductions and normalization.

4

Ruiz, VILLARET

P 1he Interactive Lambda-Calculus Tracer —[olx]

File View Actions Options Help

>

o
LF 152 I

%5

Fig. 2. Lots of B-redexes of fully expanded PREC 2.

4 Further Work

The good experience of using this tool in the classroom and as a downloadable tool
for the students suggested us to think of extending it for dealing with other basic,
and not so basic, features as: a-conversion and n-reduction, tracing substitution,
including many other reduction strategies and sorts of normal forms, use and repre-
sentation of de Bruijn style, adding types and type inference algorithm explanations
as in [4], defined combinators recognition, etc.

The fact that the tool is written in HASKELL, apart from showing to the students
that functional programming serves for making cool applications too, provides to
TILC another potential interesting pedagogical value: allowing teachers to use some
of its modules as a platform to ask the students to develop more features. Namely,
one could remove the (-reducer module and ask the students to do it using the
desired reduction strategy. Therefore, we are considering the possibility of providing
free-access to a bounded version of the code where this S-reduction part is missing,
and restricting access to the full code to teachers on-demand.

References

(1] Barendregt, H., “The Lambda Calculus. Its Syntax and Semantics.” North-Holland, 1984.

(2] Champollion, L., J. Tauberer and M. Romero, The penn lambda calculator: Pedagogical software for
natural language semantics, in: T. H. King and E. M. Bender, editors, Proceedings of the GEAFO07
Workshop (2007), pp. 106-127, http://csli-publications.stanford.edu/GEAF /2007 /geaf07-toc.html.

[3] Sestoft, P., Demonstrating lambda calculus reduction, in: The Essence of Computation, Complezity,
Analysis, Transformation. Essays Dedicated to Neil D. Jones [on occasion of his 60th birthday], Lecture
Notes in Computer Science 2566 (2002), pp. 420-435.

[4] Simoes, H. and M. Florido, Typetool - a type inference visualization tool., in: Proc. 13th International

Workshop on Functional and (Constraint) Logic Programming (WFLP’04) (2004), pp. 48-61, technical
Report AIB-2004-05, Department of Computer Science, RWTH Aachen, Germany.

[5] Thyer, M., The lambda animator, http://thyer.name/lambda-animator/.
[6] Urquiza-Fuentes, J. and J. A. Veldzquez-Iturbide, A survey of program visualizations for the functional

paradigm, in: Proc. 3rd Program Visualization Workshop (2004), pp. 2-9, research Recport CS-RR-407,
Department of Computer Science, University of Warwick, UK.

5

	Introduction
	Recalling Pure Untyped Lambda-Calculus for TILC
	Description of TILC
	Further Work
	References

