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Outline of the course

⋆ Introduction: time-continuous linear population
dynamics. Semigroup approach.

⋆ Early ecological models and epidemiological models.
Exponential/logistic population growth. SIS and SIR
models.

⋆ Continuously age-structured population models.
Linear Lotka-Mckendrick equation. Non-linear
Gurtin-MacCamy equation. Kermack-Mckendrick
equation. Size-dependent problems. Numerical
Simulations.

⋆ Matrix models. Leslie/Usher/Tridiagonal models.

MathMods IP 2009 Alba Adriatica, Italy – p. 2/45



Introduction

Time-continuous Linear Population Dynamics.
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Introduction (cont’)

⋆ The diagram shows the exponential population
growth. In general, linear models are realistic for
short periods of time.
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Introduction (cont’)

⋆ The diagram shows the exponential population
growth. In general, linear models are realistic for
short periods of time.

⋆ Both “equivalent” forms of the equation lead to an
explicit evolution given by the exponential function.

⋆ Linear models can be improved by non-linear ones
where usually it is not possible to find exact solutions.

⋆ Semigroup approach: the evolution is described by a
family of operators that map an initial state of the
system to all subsequent states.

⋆ The diagram is general, i.e. we can change R (scalar
case) by C, or R

n, or a Banach space like L1, C0.
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Introduction (cont’)

⋆ In the finite dim. case, A is a square matrix and the
matrix exponential is defined by
eAt = Id + At

1! + A2t2

2! + · · · .
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Introduction (cont’)

⋆ In the finite dim. case, A is a square matrix and the
matrix exponential is defined by
eAt = Id + At

1! + A2t2

2! + · · · .
⋆ In the infinite dim. case, A is a linear operator. If it is

bounded then the formula of the series applies.
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Introduction (cont’)

⋆ In the finite dim. case, A is a square matrix and the
matrix exponential is defined by
eAt = Id + At

1! + A2t2

2! + · · · .
⋆ In the infinite dim. case, A is a linear operator. If it is

bounded then the formula of the series applies.
⋆ In many applications, the operators are unbounded

and one has problems with the choice of the domain.
⋆ However, for a large class of unbounded operators

(Hille-Yosida), the operator exponential can be
computed as eAt φ = limn→∞

(

Id − A t
n

)−n
φ. For the

rest, eAt is just a notation.
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Early ecological models

Unstructured models for a single-species. Closed population.
Intrinsic growth rate r = β − µ. Basic reproduction num. R0 = β

µ
.

Birth and death processes.

⋆ Malthus: x(t+1)=x(t)+r x(t), x(t+∆t)=x(t)+r x(t)∆t and
taking the limit x′(t) = rx. Exponential population
growth/decay x(t) = ertx(0).
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Early ecological models

Unstructured models for a single-species. Closed population.
Intrinsic growth rate r = β − µ. Basic reproduction num. R0 = β

µ
.

Birth and death processes.

⋆ Malthus: x(t+1)=x(t)+r x(t), x(t+∆t)=x(t)+r x(t)∆t and
taking the limit x′(t) = rx. Exponential population
growth/decay x(t) = ertx(0).

⋆ Competition for resources: x′(t) = r(x) x. Verhulst
(Logistic equation): x′(t) = r (1 − x

K )x, r > 0. Logistic

population growth x(t) = Kx(0)
x(0)+(K−x(0))e−rt . x∗ = K.
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Early ecological models

Unstructured models for a single-species. Closed population.
Intrinsic growth rate r = β − µ. Basic reproduction num. R0 = β

µ
.

Birth and death processes.

⋆ Malthus: x(t+1)=x(t)+r x(t), x(t+∆t)=x(t)+r x(t)∆t and
taking the limit x′(t) = rx. Exponential population
growth/decay x(t) = ertx(0).

⋆ Competition for resources: x′(t) = r(x) x. Verhulst
(Logistic equation): x′(t) = r (1 − x

K )x, r > 0. Logistic

population growth x(t) = Kx(0)
x(0)+(K−x(0))e−rt . x∗ = K.

⋆ Allee effect: competition and (implicit) sexual
reproduction. x′(t) = r (1 − x

K )( x
K0

− 1)x, K0 < K.
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Early ecological models (cont’)
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Evolution in time (r > 0 or R0 > 1) of the population size
for the discrete (x(t) = (1 + r)tx0) and continuous
(Malthus, Verhulst, Allee) models. If r small ert ≈ (1 + r)t.
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Early ecological models (cont’)

⋆ Scalar autonomous ode → easy qualitative
behaviour analysis.
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Early ecological models (cont’)

⋆ Scalar autonomous ode → easy qualitative
behaviour analysis.

⋆ R0 average number of newborns produced by one
individual during its lifetime. r >=< 0 ⇔ R0 >=< 1.
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Early ecological models (cont’)

⋆ Scalar autonomous ode → easy qualitative
behaviour analysis.

⋆ R0 average number of newborns produced by one
individual during its lifetime. r >=< 0 ⇔ R0 >=< 1.

⋆ Probabilistic interpretation: death process x′(t)=−µx.
x(t)
x(0) = e−µt, proportion between the actual and the initial

population, or probability of an individual being alive at t ≥ 0

given that he was alive at t = 0. So, the probability of dying
is exponentially distributed: P (X ≤ t) = F (t) = 1 − e−µt, life
expectancy E[X] = 1

µ
. Per capita instantaneous death rate:

lim
dt→0

P (X≤t+dt |X>t)
dt = F ′(t)

1−F (t) = µ .
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Early epidemiological models

The “Black Death”(in a picture of the 14th century), the
plague that spread across Europe from 1347 to 1352

and made 25 millions of victims.
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Early epidemiological models

The Black Death rapidly spread along the major European sea

and land trade routes [from Wikipedia]. 2009 new pandemia

(influenza A virus subtype H1N1)? ...
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Early epidemiological models (cont’)

⋆ Spread of infectious diseases. The aim is to describe
and understand the typical pattern of a single
epidemic outbreak.
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Early epidemiological models (cont’)

⋆ Spread of infectious diseases. The aim is to describe
and understand the typical pattern of a single
epidemic outbreak.

⋆ Structure of the population according to the disease
stage: Susceptible, Infected, Removed, ...
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Early epidemiological models (cont’)

⋆ Spread of infectious diseases. The aim is to describe
and understand the typical pattern of a single
epidemic outbreak.

⋆ Structure of the population according to the disease
stage: Susceptible, Infected, Removed, ...

⋆ Basic distinction between those diseases that impart
lifelong immunity and those which do not: SIR and
SIS models.

S
β−→ I

γ−→ R

β

S ⇄ I
γ
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Early epidemiological models (cont’)

⋆ Homogeneous mixing assumption. Force of infection, rate at

which susceptible become infected (proportional to the

number of infective contacts):

infectiveness × contact rate × Infected

Total
= φ c

I

N
.

Limited or non-limited transmission if c fixed or proportional

to the population size. Duration of the infection exponentially

distributed with mean 1
γ
.
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Early epidemiological models (cont’)

⋆ Homogeneous mixing assumption. Force of infection, rate at

which susceptible become infected (proportional to the

number of infective contacts):

infectiveness × contact rate × Infected

Total
= φ c

I

N
.

Limited or non-limited transmission if c fixed or proportional

to the population size. Duration of the infection exponentially

distributed with mean 1
γ
.

⋆ Focus on the (short) epidemic period so that births and
disease-unrelated deaths can be neglected and therefore
the total population is conserved.
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SIR model

The SIR model for diseases imparting immunity










S′(t) = −βS I

I ′(t) = βS I − γI

R′(t) = γI
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SIR model

The SIR model for diseases imparting immunity










S′(t) = −βS I

I ′(t) = βS I − γI

R′(t) = γI

Total population is constant N(t) = S(t) + I(t) + R(t) = N(0).

Implicit solutions: dI
dS

= γ
βS

− 1 ,

S + I − γ

β
lnS = ct. R(t) = N(0) − (S(t) + I(t)) .
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SIR model

The SIR model for diseases imparting immunity










S′(t) = −βS I

I ′(t) = βS I − γI

R′(t) = γI

Total population is constant N(t) = S(t) + I(t) + R(t) = N(0).

Implicit solutions: dI
dS

= γ
βS

− 1 ,

S + I − γ

β
lnS = ct. R(t) = N(0) − (S(t) + I(t)) .

Final size of the epidemic S∞ > 0 is given by the solution of

S∞− γ
β

ln S∞ = S(0)+I(0)− γ
β

lnS(0) . I∞ = 0 , R∞ = N(0)−S∞.
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SIR model (cont’)

R0 average number of infections produced by an infective
individual in a wholly (S(0) ≈ N, I(0) ≈ 0, R(0) = 0)

susceptible population.
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Phase portrait and evolution in time (R0 = β
γ N > 1).
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SIS model

The SIS model for diseases which do not impart
immunity

{

S′(t) = −βS I + γI

I ′(t) = βS I − γI
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SIS model

The SIS model for diseases which do not impart
immunity

{

S′(t) = −βS I + γI

I ′(t) = βS I − γI

Total population is constant N(t) = S(t) + I(t) = N(0).

Reduction to a single equation for the fraction of infected indiv.

i(t) = I(t)
N

: (a particular logistic equation)

di

dt
= (βN(1 − i) − γ)i , 0 ≤ i(0) ≤ 1
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SIS model

The SIS model for diseases which do not impart
immunity

{

S′(t) = −βS I + γI

I ′(t) = βS I − γI

Total population is constant N(t) = S(t) + I(t) = N(0).

Reduction to a single equation for the fraction of infected indiv.

i(t) = I(t)
N

: (a particular logistic equation)

di

dt
= (βN(1 − i) − γ)i , 0 ≤ i(0) ≤ 1

Disease-free equilibrium i∗ = 0.
Endemic equilibrium i∗ = 1 − γ

βN
which exists if R0 > 1.
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SIS model (cont’)

Exchange of stability. The Endemic equilibrium is stable
(for each N ) whenever it exists.
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Bifurcation diagram and evolution in time (R0 = β
γ N > 1).
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Age structure

General continuously age-structured population models.

n types of individuals:

u(·, t) in X = L1(0,∞; Rn),

G : X → X, B : X → R
n.

da

dt
= 1 .

(a, t)

(a, t)

time

age a

(0, t-a)

t

(a-t, 0)
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Age structure

General continuously age-structured population models.

n types of individuals:

u(·, t) in X = L1(0,∞; Rn),

G : X → X, B : X → R
n.

da

dt
= 1 .

(a, t)

(a, t)

time

age a

(0, t-a)

t

(a-t, 0)

Nonlocal nonlinear 1st hyperbolic partial differential equations:

∂
∂tu(a, t)+ ∂

∂au(a, t) = G(u(·, t))(a), u(0, t) = B(u(·, t)), u(·, 0) = u0
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Age structure

General continuously age-structured population models.

n types of individuals:

u(·, t) in X = L1(0,∞; Rn),

G : X → X, B : X → R
n.

da

dt
= 1 .

(a, t)

(a, t)

time

age a

(0, t-a)

t

(a-t, 0)

Nonlocal nonlinear 1st hyperbolic partial differential equations:

∂
∂tu(a, t)+ ∂

∂au(a, t) = G(u(·, t))(a), u(0, t) = B(u(·, t)), u(·, 0) = u0

u(a, t) =







u0(a − t) +
∫ t

0 G(u(·, s))(s + a − t) ds a ≥ t

B(u(·, t − a)) +
∫ t

t−a G(u(·, s))(s + a − t) ds a < t
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Lotka-Mckendrick equation

Linear system as a first order linear pde and a nonlocal
boundary condition for the age-density of individuals















ut(a, t) + ua(a, t) + µ(a)u(a, t) = 0

u(0, t) =

∫ a†

0
β(a) u(a, t) da .

(1)

where β and µ are the age-specific fertility and mortality
rates. Maximum age a† = ∞ or finite.
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Lotka-Mckendrick equation

Linear system as a first order linear pde and a nonlocal
boundary condition for the age-density of individuals















ut(a, t) + ua(a, t) + µ(a)u(a, t) = 0

u(0, t) =

∫ a†

0
β(a) u(a, t) da .

(1)

where β and µ are the age-specific fertility and mortality
rates. Maximum age a† = ∞ or finite.

Basic reproduction number R0: the average number of
newborns produced by one individual during its lifetime.
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Lotka-Mckendrick equation (cont’)

Integration of (1) along the characteristic lines:

u(a, t) =







u0(a − t) Π(a)
Π(a−t) a ≥ t

u(0, t − a) Π(a) a < t .
(2)

Survival probability Π(a) = e−
∫ a

0 µ(σ) dσ, Π(a†) = 0. Population
size P (t) =

∫ a†

0 u(a, t) da, P ′(t) =
∫ a†

0 (β(a) − µ(a))u(a, t) da.
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Lotka-Mckendrick equation (cont’)

Integration of (1) along the characteristic lines:

u(a, t) =







u0(a − t) Π(a)
Π(a−t) a ≥ t

u(0, t − a) Π(a) a < t .
(2)

Survival probability Π(a) = e−
∫ a

0 µ(σ) dσ, Π(a†) = 0. Population
size P (t) =

∫ a†

0 u(a, t) da, P ′(t) =
∫ a†

0 (β(a) − µ(a))u(a, t) da.

Solutions with separate variables: u(a, t) = c eλ(t−a) Π(a),
with λ ∈ C solution of 1 =

∫ a†

0 β(a)e−λa Π(a) da. Unique
real root α∗ such that Re(λ) < α∗.
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Lotka-Mckendrick equation (cont’)

Integration of (1) along the characteristic lines:

u(a, t) =







u0(a − t) Π(a)
Π(a−t) a ≥ t

u(0, t − a) Π(a) a < t .
(2)

Survival probability Π(a) = e−
∫ a

0 µ(σ) dσ, Π(a†) = 0. Population
size P (t) =

∫ a†

0 u(a, t) da, P ′(t) =
∫ a†

0 (β(a) − µ(a))u(a, t) da.

Solutions with separate variables: u(a, t) = c eλ(t−a) Π(a),
with λ ∈ C solution of 1 =

∫ a†

0 β(a)e−λa Π(a) da. Unique
real root α∗ such that Re(λ) < α∗.

R0 =
∫ a†

0 β(a) Π(a) da. α∗ >=< 0 ⇔ R0 >=< 1. Age-profile
independent of time here.
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Renewal equation

Linear integral convolution eq. for birth rate B(t) = u(0, t):

B(t) =

∫ t

0
K(t − x)B(x) dx + F (t) , (3)

where K(a) := β(a)Π(a) and F (t) :=
∫ ∞
0 K(a + t) u0(a)

Π(a) da.
Functions extended by zero if a† is finite.
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Renewal equation

Linear integral convolution eq. for birth rate B(t) = u(0, t):

B(t) =

∫ t

0
K(t − x)B(x) dx + F (t) , (3)

where K(a) := β(a)Π(a) and F (t) :=
∫ ∞
0 K(a + t) u0(a)

Π(a) da.
Functions extended by zero if a† is finite.

Solution of (3) using Laplace transforms:

B̂(λ) = K̂(λ)B̂(λ) + F̂ (λ), and isolating B̂(λ) = F̂ (λ)

1−K̂(λ)
.
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Renewal equation

Linear integral convolution eq. for birth rate B(t) = u(0, t):

B(t) =

∫ t

0
K(t − x)B(x) dx + F (t) , (3)

where K(a) := β(a)Π(a) and F (t) :=
∫ ∞
0 K(a + t) u0(a)

Π(a) da.
Functions extended by zero if a† is finite.

Solution of (3) using Laplace transforms:

B̂(λ) = K̂(λ)B̂(λ) + F̂ (λ), and isolating B̂(λ) = F̂ (λ)

1−K̂(λ)
.

Therefore, B(t) is given by the inverse Laplace transform
of the rhs. Asymptotic behaviour B(t) ∼ b0e

α∗t, b0 ≥ 0.
Once we know B(t), u(a, t) is recovered by (2).
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Asynchronous exponential growth

Non-trivial initial conditions (c>0). Asymptotic behaviour:

u(a, t) ∼ c eα∗(t−a) Π(a) with c =

∫ ∞
0 e−α∗tF (t) dt

∫ ∞
0 a e−α∗aβ(a)Π(a) da

.

Convergence in L1 and pointwise.
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Asynchronous exponential growth

Non-trivial initial conditions (c>0). Asymptotic behaviour:

u(a, t) ∼ c eα∗(t−a) Π(a) with c =

∫ ∞
0 e−α∗tF (t) dt

∫ ∞
0 a e−α∗aβ(a)Π(a) da

.

Convergence in L1 and pointwise.

Adjoint operator: Mortality term can be removed.

{

ut(a, t) = −ua(a, t) , u(0, t) =
∫ ∞
0 β(a) u(a, t) da original (i)

vt(a, t) = va(a, t) + β(a) v(0, t) adjoint (i’)

Rhs of (i) is the original linear operator (φ 7→ −φ′, with domain
b.c.) and the rhs of (i’) is its adjoint operator (φ 7→ φ′ + β φ(0)).
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Asynchronous exponential growth (cont’)

Normalized eigenfunctions of (i): ũ(a) = λe−λa.

Normalized eigenfunctions of (i’):
ṽ(a) with

∫ ∞
0 ṽ(a) ũ(a) da = 1.
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Asynchronous exponential growth (cont’)

Normalized eigenfunctions of (i): ũ(a) = λe−λa.

Normalized eigenfunctions of (i’):
ṽ(a) with

∫ ∞
0 ṽ(a) ũ(a) da = 1.

−ṽ′(a) + λ ṽ(a) = β(a) ṽ(0) .

Solution: ṽ(a) = ṽ(0) eλa
∫ ∞
a β(t)e−λt dt with ṽ(0) given by

the normalization condition above.
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Asynchronous exponential growth (cont’)

Normalized eigenfunctions of (i): ũ(a) = λe−λa.

Normalized eigenfunctions of (i’):
ṽ(a) with

∫ ∞
0 ṽ(a) ũ(a) da = 1.

−ṽ′(a) + λ ṽ(a) = β(a) ṽ(0) .

Solution: ṽ(a) = ṽ(0) eλa
∫ ∞
a β(t)e−λt dt with ṽ(0) given by

the normalization condition above.

Finally, the constant c in the asynchronous exponential
growth is given by

c =
∫ ∞
0 ṽ(a) u0(a) da with λ = α∗ .
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“Stable” age distribution

Age-profile: normalized eigenfunction.

lim
t→∞

u(a, t)

P (t)
=

e−α∗a Π(a)
∫ a†

0 e−α∗a Π(a) da
.

Convergence in L1. Independent of the value of R0 and the
(non-trivial) initial condition.
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“Stable” age distribution

Age-profile: normalized eigenfunction.

lim
t→∞

u(a, t)

P (t)
=

e−α∗a Π(a)
∫ a†

0 e−α∗a Π(a) da
.

Convergence in L1. Independent of the value of R0 and the
(non-trivial) initial condition.

Comparison with transport equations: x ∈ R, t ≥ 0.
{

ut(x, t) + ν ux(x, t) = 0 ,

u(x, 0) = u0(x) .

Characteristic lines: x − ν t = ct. General solution:
u(x, t) = u0(x − ν t).
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Demography

An age distribution coming from the demography (Catalonia).
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Gurtin-MacCamy equation

Nonlinear system as an extension of (1)






























ut(a, t) + ua(a, t) + µ(a, S1(t), . . . , Sn(t)) u(a, t) = 0

u(0, t) =

∫ a†

0
β(a, S1(t), . . . , Sn(t)) u(a, t) da

Si(t) =
∫ a†

0 σi(a) u(a, t) da i = 1, . . . , n .

(4)

where β and µ are the age-specific and density-dependent
fertility and mortality rates. Si(t) are weighted population sizes.
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Gurtin-MacCamy equation

Nonlinear system as an extension of (1)






























ut(a, t) + ua(a, t) + µ(a, S1(t), . . . , Sn(t)) u(a, t) = 0

u(0, t) =

∫ a†

0
β(a, S1(t), . . . , Sn(t)) u(a, t) da

Si(t) =
∫ a†

0 σi(a) u(a, t) da i = 1, . . . , n .

(4)

where β and µ are the age-specific and density-dependent
fertility and mortality rates. Si(t) are weighted population sizes.

Analogous integration along characteristics using a
density-dependent survival probability Π(a,S).
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Gurtin-MacCamy equation (cont’)

⋆ Existence and uniqueness of (4) via a nonlinear integral
system for the birth rate and the weighted population sizes.
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Gurtin-MacCamy equation (cont’)

⋆ Existence and uniqueness of (4) via a nonlinear integral
system for the birth rate and the weighted population sizes.

⋆ Extinction equilibrium u∗ ≡ 0. Stability: either using
the total population as a Lyapunov functional or by a
linearization (L-M with µ(a,0) and β(a,0)).
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Gurtin-MacCamy equation (cont’)

⋆ Existence and uniqueness of (4) via a nonlinear integral
system for the birth rate and the weighted population sizes.

⋆ Extinction equilibrium u∗ ≡ 0. Stability: either using
the total population as a Lyapunov functional or by a
linearization (L-M with µ(a,0) and β(a,0)).

⋆ Non-trivial steady states u∗(a) = u∗(0) Π(a,S∗). The
vector S

∗ is given by system of n nonlinear equations:

1 =
∫ a†

0 β(a,S∗) Π(a,S∗) da , S∗
1

∫
a†
0

σ1(a)Π(a,S∗) da
=···=

S∗
n

∫
a†
0

σn(a)Π(a,S∗) da
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Gurtin-MacCamy equation (cont’)

⋆ Existence and uniqueness of (4) via a nonlinear integral
system for the birth rate and the weighted population sizes.

⋆ Extinction equilibrium u∗ ≡ 0. Stability: either using
the total population as a Lyapunov functional or by a
linearization (L-M with µ(a,0) and β(a,0)).

⋆ Non-trivial steady states u∗(a) = u∗(0) Π(a,S∗). The
vector S

∗ is given by system of n nonlinear equations:

1 =
∫ a†

0 β(a,S∗) Π(a,S∗) da , S∗
1

∫
a†
0

σ1(a)Π(a,S∗) da
=···=

S∗
n

∫
a†
0

σn(a)Π(a,S∗) da

⋆ Principle of linearized stability for a general nonlinear
multi-state age-dependent problem [N. Kato].
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Kermack-Mckendrick equation

Extension of the SIR model. Demographic changes
neglected. Structuring variable: τ age of infection.















































S′(t) = −
∫ τ†

0
β(τ) i(τ, t) dτ S(t)

it(τ, t) + iτ (τ, t) + γ(τ) i(τ, t) = 0

i(0, t) =

∫ τ†

0
β(τ) i(τ, t) dτ S(t)

R′(t) =

∫ τ†

0
γ(τ) i(τ, t) dτ

where γ is the age-specific removal/recovery rate and β is the
age-specific transition rate. Maximum age of infection τ†.
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Kermack-Mckendrick equation (cont’)

S(t)
β(τ)−→ i(τ, t)

γ(τ)−→ R(t)

Total population is constant:
N(t) = S(t) +

∫ τ†
0 i(τ, t) dτ + R(t) = N(0).
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Kermack-Mckendrick equation (cont’)

S(t)
β(τ)−→ i(τ, t)

γ(τ)−→ R(t)

Total population is constant:
N(t) = S(t) +

∫ τ†
0 i(τ, t) dτ + R(t) = N(0).

Similar description of the epidemics. Final size of the
epidemic S∞ > 0 is given by an equation of the same
type as in SIR. The total number of infected individuals
tends to zero and R∞ = N(0) − S∞.
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Kermack-Mckendrick equation (cont’)

S(t)
β(τ)−→ i(τ, t)

γ(τ)−→ R(t)

Total population is constant:
N(t) = S(t) +

∫ τ†
0 i(τ, t) dτ + R(t) = N(0).

Similar description of the epidemics. Final size of the
epidemic S∞ > 0 is given by an equation of the same
type as in SIR. The total number of infected individuals
tends to zero and R∞ = N(0) − S∞.

Basic reproductive number:
R0 =

∫ τ†
0 β(τ) exp(−

∫ τ

0 γ(σ)dσ)dτ N .
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Miscellaneous

Reducible size-dependent problems. Structuring variable: x size

(e.g. body length).










ut(x, t) + (γ(x)u(x, t))x + µ(x, P )u(x, t) = 0

γ(x0)u(x0, t) =

∫ x∞

x0

β(x, P )u(x, t) dx .

Individuals are born at the same size x0 and the individual

growth rate is a function of size: dx
dt

= γ(x), x(0) = x0.
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Miscellaneous

Reducible size-dependent problems. Structuring variable: x size

(e.g. body length).










ut(x, t) + (γ(x)u(x, t))x + µ(x, P )u(x, t) = 0

γ(x0)u(x0, t) =

∫ x∞

x0

β(x, P )u(x, t) dx .

Individuals are born at the same size x0 and the individual

growth rate is a function of size: dx
dt

= γ(x), x(0) = x0. Change of

variables a =
∫ x

x0

dx̄
γ(x̄) . So, a = a(x) and x = x(a). The

size-dependent problem can be reduced to an age-dependent

problem for the density v(a, t) := γ(x(a))u(x(a), t).
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Miscellaneous II

Linear chain trick. Lotka-Mckendrick equation (1) with
constant mortality µ, a fertility rate of the form
β(a) = β0 + β1e

−αa + β2ae−αa ≥ 0, and a† = ∞.
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Miscellaneous II

Linear chain trick. Lotka-Mckendrick equation (1) with
constant mortality µ, a fertility rate of the form
β(a) = β0 + β1e

−αa + β2ae−αa ≥ 0, and a† = ∞.

Defining U(t) =
∫ a†

0 u(a, t) da, V (t) =
∫ a†

0 e−αau(a, t) da and
W (t) =

∫ a†

0 ae−αau(a, t) da the system reduces to an ode







U ′(t)

V ′(t)

W ′(t)






=







β0 − µ β1 β2

β0 β1 − µ − α β2

0 1 −µ − α













U

V

W






.

The system preserves positivity. Moreover, if ct. µ and βi above
are density-dependent then we get a similar (nonlinear) system.
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Numerical simulations

An example of a simple discretization. System (4) with mortality
rate µ(a). Change of variables u(a, t) = v(a, t)Π(a):







vt(a, t) + va(a, t) = 0 , v(0, t) =
∫ a†

0 β̂(a,S) v(a, t) da

Si(t) =
∫ a†

0 σ̂i(a) v(a, t) da i = 1, . . . , k .
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Numerical simulations

An example of a simple discretization. System (4) with mortality
rate µ(a). Change of variables u(a, t) = v(a, t)Π(a):







vt(a, t) + va(a, t) = 0 , v(0, t) =
∫ a†

0 β̂(a,S) v(a, t) da

Si(t) =
∫ a†

0 σ̂i(a) v(a, t) da i = 1, . . . , k .

A simple implicit numerical scheme, e.g. square mesh
(∆a = ∆t), and Simpson’s rule combined with Newton’s
method for the boundary condition:

vn+1
j = vn

j−1 j = 1, . . . , J

vn+1
0 = Φ(∆a, vn+1

0 , vn+1
1 , · · · , vn+1

J ) .
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Numerical simulations (cont’)

Monogonont rotifera. State variables in the sexual phase:
mictic females and haploid males [Calsina & R.]























vt(a, t) + va(a, t) = −
(

C0+EH(t)
)

v(a,t)−EH(t)v∗(a) a ∈ (0, T )

vt(a, t) + va(a, t) = −µv(a, t) a ∈ (T, 1)

dV1

dt (t) = v(1, t) − µV1(t)

dH
dt (t) = V1(t) − δH(t)

v(0,t)=0, v(T+,t)=v(T−,t). v(a,0)=v0(a), V1(0)=V 0
1 , H(0)=H0 .
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Numerical simulations (cont’)

Monogonont rotifera. State variables in the sexual phase:
mictic females and haploid males [Calsina & R.]























vt(a, t) + va(a, t) = −
(

C0+EH(t)
)

v(a,t)−EH(t)v∗(a) a ∈ (0, T )

vt(a, t) + va(a, t) = −µv(a, t) a ∈ (T, 1)

dV1

dt (t) = v(1, t) − µV1(t)

dH
dt (t) = V1(t) − δH(t)

v(0,t)=0, v(T+,t)=v(T−,t). v(a,0)=v0(a), V1(0)=V 0
1 , H(0)=H0 .

Integration along characteristic lines and variation of the
constants formula.
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Numerical simulations (cont’)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0
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0.02

0.03
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µ= 0.9355, δ= 1.4463, T= 0.4274, E= 675.84, E
un
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R
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38
67

75
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m
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27

7,
 E

2=
 4

82
00

5

H

V 

initial condition

limit cycle

first approximation

Period= 3.9869, Radius= 0.0430687, Length=0.157655, t
N
= 50, ∆t= ∆a= 0.0001

Periodic orbit in population size (Virgin females, Haploid males).
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Numerical simulations (cont’)

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1
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0.25

0.3

0.35
equilibrium: V*= 0.141869, H*= 0.0112499
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at
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  H
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)

t  time

V*

H*

period: 3.9869

V(t)  virgin females

H(t)  haploid males

Population sizes as functions of time.
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Matrix Population Models

⋆ Time t and structuring variable are discrete.
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Matrix Population Models

⋆ Time t and structuring variable are discrete.
⋆ Population classified in n types of individuals:

non-negative vectors x(t). Non-negative matrix P .
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Matrix Population Models

⋆ Time t and structuring variable are discrete.
⋆ Population classified in n types of individuals:

non-negative vectors x(t). Non-negative matrix P .
⋆ Linear models: x(t + 1) = P x(t), t = 0, 1, 2 . . . ,

x(0) = x0. Projection matrix P = T + F as the sum of
transition (including survival) and fertility matrices.
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Matrix Population Models

⋆ Time t and structuring variable are discrete.
⋆ Population classified in n types of individuals:

non-negative vectors x(t). Non-negative matrix P .
⋆ Linear models: x(t + 1) = P x(t), t = 0, 1, 2 . . . ,

x(0) = x0. Projection matrix P = T + F as the sum of
transition (including survival) and fertility matrices.

⋆ tij fraction of individuals in the jth class that will survive and
move to the ith class in a unit of time, and fij the number of
newborns in the ith class that descend from one individual
in the jth class in a unit of time. Notice

∑

i tij ≤ 1.
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Matrix Population Models

⋆ Time t and structuring variable are discrete.
⋆ Population classified in n types of individuals:

non-negative vectors x(t). Non-negative matrix P .
⋆ Linear models: x(t + 1) = P x(t), t = 0, 1, 2 . . . ,

x(0) = x0. Projection matrix P = T + F as the sum of
transition (including survival) and fertility matrices.

⋆ tij fraction of individuals in the jth class that will survive and
move to the ith class in a unit of time, and fij the number of
newborns in the ith class that descend from one individual
in the jth class in a unit of time. Notice

∑

i tij ≤ 1.

⋆ Non-linear models: x(t + 1) = P
(

x(t)
)

x(t), t = 0, 1, . . .
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Matrix Population Models (cont’)

Birth, death (survival) and transition processes:












x1(t + 1)

x2(t + 1)
...

xn(t + 1)













=













t11 + f11 · · · t1n + f1n

t21 · · · t2n

...
...

tn1 · · · tnn

























x1(t)

x2(t)
...

xn(t)













.
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Matrix Population Models (cont’)

Birth, death (survival) and transition processes:












x1(t + 1)

x2(t + 1)
...

xn(t + 1)













=













t11 + f11 · · · t1n + f1n

t21 · · · t2n

...
...

tn1 · · · tnn

























x1(t)

x2(t)
...

xn(t)













.

Solution x(t) = P t
x(0), t = 0, 1, 2 . . .
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Matrix Population Models (cont’)

Birth, death (survival) and transition processes:












x1(t + 1)

x2(t + 1)
...

xn(t + 1)













=













t11 + f11 · · · t1n + f1n

t21 · · · t2n

...
...

tn1 · · · tnn

























x1(t)

x2(t)
...

xn(t)













.

Solution x(t) = P t
x(0), t = 0, 1, 2 . . .

If P = W · Λ · V T, Λ diagonal matrix of the eigenvalues
and the matrices W , V T the right and left eigenvectors,
then x(t) = W · Λt · V T

x(0), t = 0, 1, 2 . . . . Equivalently,
x(t) =

∑n
i=1 ci λ

t
i wi with ci suitable cts related to i.c.
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Perron-Frobenious theory

Non-negative matrices A. Eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn|
with right and left eigenvectors wi and vi.
Irreducible: (Id + A)n−1 > 0. Primitive: Ak > 0, k ≤ (n−1)2+1.
Primitive ⇒ Irreducible.

⋆ Reducible: λ1 ≥ 0, w1 ≥ 0 and v1 ≥ 0, λ1 ≥ |λi|, i > 1.
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Perron-Frobenious theory

Non-negative matrices A. Eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn|
with right and left eigenvectors wi and vi.
Irreducible: (Id + A)n−1 > 0. Primitive: Ak > 0, k ≤ (n−1)2+1.
Primitive ⇒ Irreducible.

⋆ Reducible: λ1 ≥ 0, w1 ≥ 0 and v1 ≥ 0, λ1 ≥ |λi|, i > 1.

⋆ Irreducible and primitive:
λ1 > 0 simple root, w1 > 0 and v1 > 0, λ1 > |λi|, i > 1.
λ1 is the unique eigenvalue with a non-negative eigenvector.
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Perron-Frobenious theory

Non-negative matrices A. Eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn|
with right and left eigenvectors wi and vi.
Irreducible: (Id + A)n−1 > 0. Primitive: Ak > 0, k ≤ (n−1)2+1.
Primitive ⇒ Irreducible.

⋆ Reducible: λ1 ≥ 0, w1 ≥ 0 and v1 ≥ 0, λ1 ≥ |λi|, i > 1.

⋆ Irreducible and primitive:
λ1 > 0 simple root, w1 > 0 and v1 > 0, λ1 > |λi|, i > 1.
λ1 is the unique eigenvalue with a non-negative eigenvector.

⋆ Irreducible and imprimitive:
λ1 > 0 simple root, w1 > 0 and v1 > 0, λ1 = |λi|,
i = 2, · · · , d and λ1 > |λi|, i > d. λ1 is unique as above.
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Fundamental theorem of demography

P primitive, λ1 > 0 dominant eigenvalue with right and left
eigenvectors w > 0,v > 0 normalized so that v

T
w = 1.







p11 · · · p1n

...
...

pn1 · · · pnn







t

∼ λt
1







w1
...

wn







(

v1 · · · vn

)

.

MathMods IP 2009 Alba Adriatica, Italy – p. 36/45



Fundamental theorem of demography

P primitive, λ1 > 0 dominant eigenvalue with right and left
eigenvectors w > 0,v > 0 normalized so that v

T
w = 1.







p11 · · · p1n

...
...

pn1 · · · pnn







t

∼ λt
1







w1
...

wn







(

v1 · · · vn

)

.







x1(t)
...

xn(t)






∼ c λt

1







w1
...

wn






, c :=

(

v1 ··· vn

)







x1(0)

...
xn(0)






.
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Fundamental theorem of demography (cont’)

Total population N(t) = |x(t)| :=
∑

i |xi(t)|. (c > 0).

lim
t→∞

N(t) =











0 if λ1 < 1 ,

c|w| if λ1 = 1 ,

∞ if λ1 > 1 .

, lim
t→∞

N(t + 1)

N(t)
= λ1 .
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Fundamental theorem of demography (cont’)

Total population N(t) = |x(t)| :=
∑

i |xi(t)|. (c > 0).

lim
t→∞

N(t) =











0 if λ1 < 1 ,

c|w| if λ1 = 1 ,

∞ if λ1 > 1 .

, lim
t→∞

N(t + 1)

N(t)
= λ1 .

“Stable” distribution: normalized left eigenvector.

lim
t→∞

1

N(t)







x1(t)
...

xn(t)






=

1

|w|







w1
...

wn






.

Independent of the value of λ1 and the (non-trivial) i.c.
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Basic reproduction number

No immortal individuals: limt→∞ T t = 0.

R := F (Id − T )−1 = F (Id + T + T 2 + T 3 + · · · ) .
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Basic reproduction number

No immortal individuals: limt→∞ T t = 0.

R := F (Id − T )−1 = F (Id + T + T 2 + T 3 + · · · ) .

R0 spectral radius of the matrix R. rij number of i class
offspring that an individual born into class j will produce
over its lifetime.

1 < λ1 < R0 or λ1 = 1 = R0 or 0 < R0 < λ1 < 1 .
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Basic reproduction number

No immortal individuals: limt→∞ T t = 0.

R := F (Id − T )−1 = F (Id + T + T 2 + T 3 + · · · ) .

R0 spectral radius of the matrix R. rij number of i class
offspring that an individual born into class j will produce
over its lifetime.

1 < λ1 < R0 or λ1 = 1 = R0 or 0 < R0 < λ1 < 1 .

Examples with newborns belonging to the 1st class.
Eigenvalues of R: R0 = r11 (average number of
newborns produced by one individual during its lifetime)
and the other (n − 1) being equal to zero.
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Basic reproduction number (cont’)

⋆ Age-structure (Leslie matrix): T has the 1st subdiagonal.

R0 =

n
∑

i=1

f1i

i
∏

j=1

tj,j−1, with t10 := 1.
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Basic reproduction number (cont’)

⋆ Age-structure (Leslie matrix): T has the 1st subdiagonal.

R0 =

n
∑

i=1

f1i

i
∏

j=1

tj,j−1, with t10 := 1.

⋆ Size-structure (Usher matrix): T has the diagonal and the

1st subdiagonal. R0 =

n
∑

i=1

f1i

i
∏

j=1

tj,j−1

1 − tjj
.
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Basic reproduction number (cont’)

⋆ Age-structure (Leslie matrix): T has the 1st subdiagonal.

R0 =

n
∑

i=1

f1i

i
∏

j=1

tj,j−1, with t10 := 1.

⋆ Size-structure (Usher matrix): T has the diagonal and the

1st subdiagonal. R0 =

n
∑

i=1

f1i

i
∏

j=1

tj,j−1

1 − tjj
.

⋆ Class-structure [R., Saldaña & Senar]: T is tridiagonal

(main, sub and super), so only transitions to adjacent

classes. R0 =
n

∑

i=1

f1i

i
∏

j=1

tj,j−1

(1 − tjj)(1 − pj)
, with 0 ≤ pj < 1

suitable values computed recursively.
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Fibonacci’s rabbits

Leonardo Pisano, also known as Fibonacci, was born in Italy in

about 1170 but educated in North Africa, where his father was a

diplomat, and died in 1250. His famous book, Liber abaci, was

published in 1202 and brought decimal or Hindu-Arabic

numerals into general use in Europe. In the third section of this

book he posed the following question:
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Fibonacci’s rabbits

Leonardo Pisano, also known as Fibonacci, was born in Italy in

about 1170 but educated in North Africa, where his father was a

diplomat, and died in 1250. His famous book, Liber abaci, was

published in 1202 and brought decimal or Hindu-Arabic

numerals into general use in Europe. In the third section of this

book he posed the following question:

A certain man put a pair of rabbits in a place

surrounded on all sides by a wall. How many pairs of

rabbits can be produced from that pair in a year if it is

supposed that every month each pair begets a new pair

which from the second month on becomes productive?
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Fibonacci’s rabbits (cont’)

⋆ uj, n the number of j-month-old pairs of rabbits at
time n in months, and un =

∑∞
j=0 uj, n the total

number of pairs of rabbits at time n.
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Fibonacci’s rabbits (cont’)

⋆ uj, n the number of j-month-old pairs of rabbits at
time n in months, and un =

∑∞
j=0 uj, n the total

number of pairs of rabbits at time n.
⋆ No rabbits ever die, so the number of j-old pairs at

time n equals to the number of (j + 1)-old pairs at
time n + 1: uj+1, n+1 − uj, n = 0 , u0, n =

∑∞
j=2 uj, n,

where the number of newborn pairs equals to the
number of adult pairs.
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Fibonacci’s rabbits (cont’)

⋆ uj, n the number of j-month-old pairs of rabbits at
time n in months, and un =

∑∞
j=0 uj, n the total

number of pairs of rabbits at time n.
⋆ No rabbits ever die, so the number of j-old pairs at

time n equals to the number of (j + 1)-old pairs at
time n + 1: uj+1, n+1 − uj, n = 0 , u0, n =

∑∞
j=2 uj, n,

where the number of newborn pairs equals to the
number of adult pairs.

⋆ Homogeneous linear recurrence equation:
un+2 = un+1 + un, n ≥ 0.
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Fibonacci’s rabbits (cont’)

⋆ Starting by a single newborn pair of rabbits, the
answer to the question of the book is the famous
Fibonacci sequence:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .
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Fibonacci’s rabbits (cont’)

⋆ Starting by a single newborn pair of rabbits, the
answer to the question of the book is the famous
Fibonacci sequence:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

⋆ General solution: a linear combination of λn, where λ

are the solutions of λ2 = λ + 1.

un = c1

(1 +
√

5

2

)n
+ c2

(1 −
√

5

2

)n
, n ≥ 0 .
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Fibonacci’s rabbits (cont’)

⋆ Starting by a single newborn pair of rabbits, the
answer to the question of the book is the famous
Fibonacci sequence:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

⋆ General solution: a linear combination of λn, where λ

are the solutions of λ2 = λ + 1.

un = c1

(1 +
√

5

2

)n
+ c2

(1 −
√

5

2

)n
, n ≥ 0 .

⋆ Asymptotic behaviour: (c1 > 0).

lim
n→∞

un+1

un
=

1 +
√

5

2
≃ 1.618 > 1, the golden ratio.
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Final exercise:

Consider the following linear problem of the Fibonacci’s
rabbits in continuous age and time:

ut(a, t) + ua(a, t) = 0 , u(0, t) =

∫ ∞

2
u(a, t) da , (5)

where u(a, t) is the age-density of pairs of rabbits.

1. Find the eigenvalues and the eigenfunctions of the
linear system (5). Hint: compute the solutions with
separate variables.

2. Compute the “stable” age distribution of the pairs of
rabbits and limt→∞

P (t+1)
P (t) , where P (t) is the total

population.
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