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Discrete-time Epidemic Model

Introduction. Discrete model single-epidemic outbreak

e Key-feature: infection prior to symptom onset.

e Diseases with asymptomatic carriers: typhoid, HIV, C.
difficile, influenza, cholera, tuberculosis and COVID-19.

e Non-linear Markov chain. Transitions based on geometric
or negative-binomial probability distributions and infection
process on a Poisson distribution (# of contacts per day).

e We focus on two epidemiological indicators: transmission
potential (Ro) and the severity of the pathogen (virulence).

exposure
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Discrete-time Epidemic Model

Introduction (cont’)

Non-linear epidemic model in discrete-time t = 0,1,2,... days.

e Markov chain. State variables according to the disease
progression. Fraction of individuals: Susceptible, Exposed
(latent who are not infectious), Asymptomatic (but with
transmission), Symptomatic (/ infectious), Removed (alive
and immune) and Deceased (disease-related).

e Total pop. S; + Et +A;r+ L+ R +Dy=1,t>0.

e Linear transitions between states based on the geometric
distribution P(X = k) = p(1 — p)*~!, k > 1, E[X] = 1,
Var(X) = lp_—z”, for some generic probability p.

e Fixed probabilities of the model: 0 < «, 9,7, p, g < 1.
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Discrete-time Epidemic Model

Flow diagram of the SEA-RID non-linear Markov chain
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Figure: Infection process with probability ¢ = 1 — e~ (F1A+52/)/(1-D)
depending on the number of infectious hosts, either asymptomatic or
symptomatic, over alive population. No demographic turnover.
Complete immunity along each epidemic outbreak. Virulence: g~.
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Discrete-time Epidemic Model

Model equations. Force of infection

e Force of infectione; =1 — e —(BrActB20) /(1-Di) . B1, 52 > 0.

e System for each epidemic outbreak (single wave):

5t+1 (1 - Et)st

Eir1 =e:Se+ (1 —a)E;

Atr1 = aEr + (1 = 9)A:

ley1 = pdA: + (1 — )l 7
Rey1=(1—p)oAc+ (1 —q)vl + Ry
Diy1 = qvls + Dy

e Probability of developing symptoms p and case fatality ratio
g, the proportion of symptomatic cases that result in death.
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Discrete-time Epidemic Model

Model equations. Limitations

The introduced model has several limitations:

e |t is deterministic, although it has many underneath
probabilistic models, so no random variation.

e |t is rather homogeneous in many aspects: no age, no
space, no time-since-exposure, no different susceptibility ...

e |t is autonomous, i.e. time-independent model parameters.

e As mentioned earlier, no demographic turnover and no loss
of immunity. It is independent of within-host dynamics ...

... but discrete-time is not a limitation at all.
Future work: age-classes (kids, adults and older people).
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Discrete-time Epidemic Model

Recurrent sequences formulation. Extension to initial histories

o]
e Re=1—(S:+E +A:+ 1, +D;) and D; = qVZ/t_J-. Then,

j=1
using the model equations recursively we get to:

1-D;_;

5t—H(1—etJ = e (- 332, A

Et = Z(l — O[)j_lftfjstfj

j=1
[o¢]

Ar=a) (1-0Y7'E;
j=1

le=pdy (1—Y T Ac

j=1
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Discrete-time Epidemic Model

Non-linear renewal equation (asymptomatics)

e Reduction to a scalar non-linear discrete renewal

equation for A;:

A = aZ(l — 5)"'712(1 — ()é)kilz’:‘t,j,kH(l — 5t7j7k7n)
j=1 k=1 n=1

with
er = 1—exp (—(B1Ac+62p03 721 (1 =Y Ae—j) /(1 - D))
and Dy = pgdy 3l (1 — ) 02 Ar ke

e The other variables are computed in order as I;, S; and E;.
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Discrete-time Epidemic Model

Non-linear renewal equation (asymptomatics). 5 terms

e Probabilistic interpretation of the renewal equation:
Ar =21
probability of being susceptible until time t — j — k
prob. per time-unit of becoming infected at t — j — k
probability latent period is k days

X X X X

probability infectious asymptomatic period is j days
mean infectious asymptomatic period

kst 11 —eo) x o x a1l — )1 x §(1— sy x %
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Discrete-time Epidemic Model

Basic reproduction number Ry. Two natural viewpoints

We can compute the basic reproduction number for the present
model once we have decided what is an infection event:

1. Infection event is meant as the exposition to the pathogen
of a susceptible host becoming an asymptomatic individual.

2. Infection event is meant as the onset of symptoms for a
host who has been exposed to the pathogen in the past.
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Discrete-time Epidemic Model
Linearization: Eq 4+ Ag + lp < 1. 1st viewpoint

At the disease-free SS, ¢; ~ B1A; + ﬁgp(SZ(l — YA
j=1

Linear discrete renewal equation (3 geometric distributions):

Za (1—6)~ 1Za o)kt 51At_, kﬁ”’z 1-9)"" At jkn)

e Basic reproduction number: spectral radius of the 1-dim.
next-generation operator. Rg 5 = %1 + ﬂ“’ , as the expected
secondary asymptomatic cases produced by asymptomatic

primary case. Abstract setting piekmann 1990].
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Discrete-time Epidemic Model

Progression over time of the infection £E — A — |
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Figure: Size of the peaks: Ego = 1.93%, Ags = 7.5%, ls7 = 3.89%, and
Ria= %ﬁw P2y p%ﬁd(l_m . % giving the transmission

potential of the disease at the t-th day, that starts at t = 0 as Ry ,.
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Discrete-time Epidemic Model

Alternative basic reproduction numbers

e Before tackling computation from 2nd viewpoint, consider
the 2-dimensional linear discrete renewal equation:

o
le=pdy (1—~Y A
J 1

Z 1—-0y~ 1204 a)k= 1<B1At—J K+ Boli—j— k)
j=1

e Joint basic reproduction number: spectral radius of the

2-dim. next-generation operator R = % + (51) + ’BZP.
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Discrete-time Epidemic Model

Renewal equation (symptomatics). 2nd viewpoint

e Linear operator (’C¢) Reduce to a single renewal eq. for I,
if <1 )= ﬁzpaz (L=Y 7 ((Id = B1E) KT

e Then, the basic reproduction number is given by

Ros = ﬁQPZ (Bryn—1 = ,y — 6”/5, interpreted as the

expected # of symptomatic individuals that a symptomatic
individual will produce. Sum of pre-symptomatic cases.

e As expected, the three expressions of Rg are such that

sign(Ro, — 1) = sign(Ro,s — 1) = sign(Ro — 1),

and they are related via a function of % and %.

14/23



Discrete-time Epidemic Model

Evolution of infection transmission. Virulence-transmission tradeoff

B Bop
itp T Tip

average between pre-symptomatic and post-symptomatic.

o Weighted mean transmission rate 3 =

e Provided that hosts can develop symptoms p > 0 and die
from the disease g > 0, virulence is positively correlated
with transmission as gy = p-cf2 <1, ¢ >0.

e We optimize R for transmission rate of the symptomatic

2
phase: R07a(l62) = % + fZBZ — ﬂl + ﬁZq (511_:_6[32,3) .

Global maximum such that 35 > ﬁzp = ;.

e Accordingly, we get an optimal (intermediate) virulence
z 2
g7 =p-c(B*)=p-c (1_‘3,) :
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Discrete-time Epidemic Model

Optimal virulence under tradeoff
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Figure: Plots in virulence g, prob. of dying due to disease symptoms.
Left: mean trans. rate 5 = , /% days—!. C: trans. time T = %—i— % days.
Right: basic reproduction numbers and optimal virulence gv* = 0.08.
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Discrete-time Epidemic Model

Evolutionary outcomes
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Figure: At maximal R, transmission rate is always higher in the
symptomatic phase 85 > 3p = [51, yet most of the infections take

place prior to symptom onset if longer asymptomatic phase % > =5
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Discrete-time Epidemic Model

Final size of symptomatic hosts

S; is bounded in the interval:

o0 o
exp (— M}_"",Sfj“") < S <exp (—ZﬁlA”%/m)
n=1

n=1

e |t turns out that Jim iﬂlAH +Bale—p = (5 + 22)(1 - 5x).
e Finally, we get an interval for S, solving 2 equations:
—Soo
G_Ro’am < Soo < engva(lfSOC) )
e If pg < 1 we recover the classical equation.
e Final size of the symptomatic hosts is %(1 — 550)-

1—p)d+~y
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Discrete-time Epidemic Model

Enhanced model. Sub-stages & loss of immunity

e From geometric distribution (discrete analog to exp. dist.)
to negative binomial distribution (discrete analog to the
Gamma distribution) and reinfection probability 6:

5t+1 (1 — 6[-)51- + HRt

Al =aEl +(1- )A}, Al =0AT + (1 - 0)A]
Iy = pSAT+ (L=, =l + (1=
Rev1=(1—p)oA7 + (1 — gl + (1 - 0)R:

Dty1 = gyl + Dy

i=2...n.

El =S+ (1—a)E}, Et’H—aE’ Lr(1-a)E

19/23



Discrete-time Epidemic Model

Enhanced model (cont’)

o Underneath prob. model: P(X = k) = (X_1)p"(1 — p)k—",
k> n, E[X] =, Var(X) = n%.
e Basic reproduction number from the asymptomatic point of
view is analogous
pin  Bapn

Roa = —
0, 6+ 5

e One can write analogous but more involved non-linear and
linear renewal equations for the enhanced model.
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SUMMARY:

A Discrete Model for the Evolution of Infection Prior to Symptom Onset

e Discrete epidemic models are simple yet powerful dynamical
systems to describe Inf. Diseases. Suitable for discrete data.

e Reduction of the epidemic model to a non-linear renewal
equation with a meaningful probabilistic interpretation.

e Computation and interpretation of the basic reproduction
number from asymptomatic and symptomatic viewpoints.

e Maximization of Ry giving the optimal virulence level.
Transmission higher in the symptomatic phase yet most of

the infections take place prior to symptom onset.

e Determination of the final size of symptomatic hosts.
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