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Discrete-time Epidemic Model
Introduction. Discrete model single-epidemic outbreak

• Key-feature: infection prior to symptom onset.

• Diseases with asymptomatic carriers: typhoid, HIV, C.

difficile, influenza, cholera, tuberculosis and COVID-19.

• Non-linear Markov chain. Transitions based on geometric

or negative-binomial probability distributions and infection

process on a Poisson distribution (# of contacts per day).

• We focus on two epidemiological indicators: transmission

potential (R0) and the severity of the pathogen (virulence).
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Discrete-time Epidemic Model
Introduction (cont’)

Non-linear epidemic model in discrete-time t = 0, 1, 2, . . . days.

• Markov chain. State variables according to the disease

progression. Fraction of individuals: Susceptible, Exposed

(latent who are not infectious), Asymptomatic (but with

transmission), Symptomatic (I infectious), Removed (alive

and immune) and Deceased (disease-related).

• Total pop. St + Et + At + It + Rt + Dt = 1, t ≥ 0.

• Linear transitions between states based on the geometric

distribution P(X = k) = p(1− p)k−1, k ≥ 1, E[X ] = 1
p ,

Var(X ) = 1−p
p2

, for some generic probability p.

• Fixed probabilities of the model: 0 < α, δ, γ, p, q < 1.
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Discrete-time Epidemic Model
Flow diagram of the SEA-RID non-linear Markov chain

Figure: Infection process with probability ε = 1− e−(β1A+β2I )/(1−D)

depending on the number of infectious hosts, either asymptomatic or

symptomatic, over alive population. No demographic turnover.

Complete immunity along each epidemic outbreak. Virulence: qγ.
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Discrete-time Epidemic Model
Model equations. Force of infection

• Force of infection εt = 1− e−(β1At+β2It)/(1−Dt), β1, β2 > 0.

• System for each epidemic outbreak (single wave):

St+1 = (1− εt)St

Et+1 = εtSt + (1− α)Et

At+1 = αEt + (1− δ)At

It+1 = pδAt + (1− γ)It

Rt+1 = (1− p)δAt + (1− q)γIt + Rt

Dt+1 = qγIt + Dt

, t ≥ 0 .

• Probability of developing symptoms p and case fatality ratio

q, the proportion of symptomatic cases that result in death.

5 / 23



Discrete-time Epidemic Model
Model equations. Limitations

The introduced model has several limitations:

• It is deterministic, although it has many underneath

probabilistic models, so no random variation.

• It is rather homogeneous in many aspects: no age, no

space, no time-since-exposure, no different susceptibility ...

• It is autonomous, i.e. time-independent model parameters.

• As mentioned earlier, no demographic turnover and no loss

of immunity. It is independent of within-host dynamics ...

... but discrete-time is not a limitation at all.

Future work: age-classes (kids, adults and older people).
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Discrete-time Epidemic Model
Recurrent sequences formulation. Extension to initial histories

• Rt = 1− (St + Et + At + It + Dt) and Dt = qγ
∞∑
j=1

It−j . Then,

using the model equations recursively we get to:

St =
∞∏
j=1

(1− εt−j) = exp
(
−
∑∞

j=1
β1At−j+β2It−j

1−Dt−j

)
Et =

∞∑
j=1

(1− α)j−1εt−jSt−j

At = α

∞∑
j=1

(1− δ)j−1Et−j

It = pδ
∞∑
j=1

(1− γ)j−1At−j

, t ≥ 1 .
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Discrete-time Epidemic Model
Non-linear renewal equation (asymptomatics)

• Reduction to a scalar non-linear discrete renewal

equation for At :

At = α

∞∑
j=1

(1− δ)j−1
∞∑
k=1

(1−α)k−1εt−j−k

∞∏
n=1

(1− εt−j−k−n)

with

εt = 1−exp
(
−(β1At+β2pδ

∑∞
j=1(1−γ)j−1At−j)/(1−Dt)

)
and Dt = pqδγ

∑∞
k=1(1− γ)k−1

∑∞
j=1At−j−k .

• The other variables are computed in order as It , St and Et .
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Discrete-time Epidemic Model
Non-linear renewal equation (asymptomatics). 5 terms

• Probabilistic interpretation of the renewal equation:

At =
∑

j ,k≥1

probability of being susceptible until time t − j − k ×
prob. per time-unit of becoming infected at t − j − k ×

probability latent period is k days ×
probability infectious asymptomatic period is j days ×

mean infectious asymptomatic period =∑
j ,k≥1

∏
(1− ε⋄)× ε⋄ × α(1− α)k−1 × δ(1− δ)j−1 × 1

δ
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Discrete-time Epidemic Model
Basic reproduction number R0. Two natural viewpoints

We can compute the basic reproduction number for the present

model once we have decided what is an infection event:

1. Infection event is meant as the exposition to the pathogen

of a susceptible host becoming an asymptomatic individual.

2. Infection event is meant as the onset of symptoms for a

host who has been exposed to the pathogen in the past.
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Discrete-time Epidemic Model
Linearization: E0 + A0 + I0 ≪ 1. 1st viewpoint

At the disease-free SS, εt ≃ β1At + β2pδ
∞∑
j=1

(1− γ)j−1At−j .

Linear discrete renewal equation (3 geometric distributions):

At =
∞∑
j=1

δ(1−δ)j−1
∞∑
k=1

α(1−α)k−1
(β1
δ
At−j−k+

β2p

γ

∞∑
n=1

γ(1−γ)n−1At−j−k−n

)

• Basic reproduction number: spectral radius of the 1-dim.

next-generation operator. R0,a =
β1
δ + β2p

γ , as the expected

secondary asymptomatic cases produced by asymptomatic

primary case. Abstract setting [Diekmann 1990].
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Discrete-time Epidemic Model
Progression over time of the infection E → A → I
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Figure: Size of the peaks: E60 = 1.93%, A64 = 7.5%, I67 = 3.89%, and

Rt,a =
1−e−β1At/(1−Dt )

At
· St

δ + p 1−e−β2 It/(1−Dt )

It
· St

γ , giving the transmission

potential of the disease at the t-th day, that starts at t = 0 as R0,a.
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Discrete-time Epidemic Model
Alternative basic reproduction numbers

• Before tackling computation from 2nd viewpoint, consider

the 2-dimensional linear discrete renewal equation:
It = pδ

∞∑
j=1

(1− γ)j−1At−j

At =
∞∑
j=1

(1− δ)j−1
∞∑
k=1

α(1− α)k−1
(
β1At−j−k + β2It−j−k

)

• Joint basic reproduction number : spectral radius of the

2-dim. next-generation operator R̃0 =
β1
2δ +

√(β1
2δ

)2
+ β2p

γ .
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Discrete-time Epidemic Model
Renewal equation (symptomatics). 2nd viewpoint

• Linear operator (Kϕ)t . Reduce to a single renewal eq. for It

if β1
δ < 1: It = β2pδ

∞∑
j=1

(1− γ)j−1
(
(Id − β1K)−1K I

)
t−j

.

• Then, the basic reproduction number is given by

R0,s =
β2
γ p

∞∑
n=1

(β1
δ )

n−1 = β2
γ

p
1−β1/δ

, interpreted as the

expected # of symptomatic individuals that a symptomatic

individual will produce. Sum of pre-symptomatic cases.

• As expected, the three expressions of R0 are such that

sign(R0,a − 1) = sign(R0,s − 1) = sign(R̃0 − 1),

and they are related via a function of β1
δ and β2p

γ .
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Discrete-time Epidemic Model
Evolution of infection transmission. Virulence-transmission tradeoff

• Weighted mean transmission rate β̄ = β1
1+p + β2p

1+p ,

average between pre-symptomatic and post-symptomatic.

• Provided that hosts can develop symptoms p > 0 and die

from the disease q > 0, virulence is positively correlated

with transmission as qγ = p · cβ̄2 ≤ 1 , c > 0 .

• We optimize R0 for transmission rate of the symptomatic

phase: R0,a(β2) =
β1
δ + β2q

cβ̄2 = β1
δ + β2q

c

(
1+p

β1+β2p

)2
.

Global maximum such that β∗
2 > β∗

2p = β1.

• Accordingly, we get an optimal (intermediate) virulence

qγ∗ = p · c(β̄∗)2 = p · c
(

2β1
1+p

)2
.
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Discrete-time Epidemic Model
Optimal virulence under tradeoff
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Figure: Plots in virulence qγ, prob. of dying due to disease symptoms.

Left: mean trans. rate β̄ =
√

qγ
pc days−1. C: trans. time T = 1

δ +
q
qγ days.

Right: basic reproduction numbers and optimal virulence qγ∗ = 0.08.
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Discrete-time Epidemic Model
Evolutionary outcomes

transmission rate

exposure transmission onset symptom onset

(expected) timeasymptomatic phase symptomatic phaselatent phase

Figure: At maximal R0, transmission rate is always higher in the

symptomatic phase β∗
2 > β∗

2p = β1, yet most of the infections take

place prior to symptom onset if longer asymptomatic phase 1
δ > 1

γ∗ .
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Discrete-time Epidemic Model
Final size of symptomatic hosts

• St is bounded in the interval:

exp

(
−

∞∑
n=1

β1At−n+β2It−n

1−D∞

)
≤ St ≤ exp

(
−

∞∑
n=1

β1At−n+β2It−n

)
• It turns out that lim

t→∞

∞∑
n=1

β1At−n + β2It−n =
( β1

δ
+

β2p
γ

)
(1 − S∞).

• Finally, we get an interval for S∞ solving 2 equations:

e
−R0,a

1−S∞
1−pq(1−S∞) ≤ S∞ ≤ e−R0,a(1−S∞) .

• If pq ≪ 1 we recover the classical equation.

• Final size of the symptomatic hosts is γ
(1−p)δ+γ (1− S∞).
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Discrete-time Epidemic Model
Enhanced model. Sub-stages & loss of immunity

• From geometric distribution (discrete analog to exp. dist.)

to negative binomial distribution (discrete analog to the

Gamma distribution) and reinfection probability θ:

St+1 = (1− εt)St + θRt

E 1
t+1 = εtSt + (1− α)E 1

t , E i
t+1 = αE i−1

t + (1− α)E i
t

A1
t+1 = αEn

t + (1− δ)A1
t , Ai

t+1 = δAi−1
t + (1− δ)Ai

t

I 1t+1 = pδAn
t + (1− γ)I 1t , I it+1 = γI i−1

t + (1− γ)I it
Rt+1 = (1− p)δAn

t + (1− q)γI nt + (1− θ)Rt

Dt+1 = qγI nt + Dt

i = 2 . . . n.
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Discrete-time Epidemic Model
Enhanced model (cont’)

• Underneath prob. model: P(X = k) =
(k−1
n−1

)
pn(1− p)k−n,

k ≥ n, E[X ] = n
p , Var(X ) = n 1−p

p2
.

• Basic reproduction number from the asymptomatic point of

view is analogous

R0,a =
β1n

δ
+

β2p n

γ
.

• One can write analogous but more involved non-linear and

linear renewal equations for the enhanced model.
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SUMMARY:
A Discrete Model for the Evolution of Infection Prior to Symptom Onset

• Discrete epidemic models are simple yet powerful dynamical

systems to describe Inf. Diseases. Suitable for discrete data.

• Reduction of the epidemic model to a non-linear renewal

equation with a meaningful probabilistic interpretation.

• Computation and interpretation of the basic reproduction

number from asymptomatic and symptomatic viewpoints.

• Maximization of R0 giving the optimal virulence level.

Transmission higher in the symptomatic phase yet most of

the infections take place prior to symptom onset.

• Determination of the final size of symptomatic hosts.
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